Bằng chứng quan sát Vật_chất_tối

Sự phân bố dự kiến của vật chất tối trong thiên hà Milky Way như một quầng sáng màu xanh của vật chất bao quanh thiên hà.[4]

Đường cong thiên hà

Bài chi tiết: Đường cong thiên hà
Đường cong quay của một thiên hà xoắn ốc điển hình: dự đoán (A) và quan sát (B). Vật chất tối có thể giải thích sự xuất hiện 'phẳng' của đường cong vận tốc ra bán kính lớn.

Cánh tay của các thiên hà xoắn ốc xoay quanh trung tâm thiên hà. Mật độ khối phát sáng của một thiên hà xoắn ốc giảm khi người ta đi từ trung tâm ra ngoài rìa. Nếu khối lượng phát sáng là tất cả vấn đề, thì chúng ta có thể mô hình thiên hà như một khối điểm ở trung tâm và kiểm tra các khối lượng quay quanh nó, tương tự như Hệ Mặt trời.[lower-alpha 1] Từ Định luật thứ hai của Kepler, dự kiến vận tốc quay sẽ giảm theo khoảng cách từ tâm, tương tự như Hệ mặt trời. Điều này không được quan sát.[5] Thay vào đó, đường cong xoay thiên hà vẫn phẳng khi khoảng cách từ tâm tăng lên.

Nếu định luật của Kepler là chính xác, thì cách rõ ràng để giải quyết sự khác biệt này là kết luận sự phân bố khối lượng trong các thiên hà xoắn ốc không giống với Hệ Mặt trời. Đặc biệt, có rất nhiều vật chất không phát sáng (vật chất tối) ở vùng ngoại ô của thiên hà.

Vận tốc phân tán

Bài chi tiết: Vận tốc phân tán

Các ngôi sao trong các hệ thống ràng buộc phải tuân theo định lý virial. Định lý này, cùng với phân bố vận tốc đo được, có thể được sử dụng để đo phân bố khối lượng trong một hệ thống ràng buộc, chẳng hạn như các thiên hà hình elip hoặc các cụm cầu. Với một số ngoại lệ, ước tính phân tán vận tốc của các thiên hà hình elip[6] không khớp với sự phân tán vận tốc dự đoán từ phân bố khối lượng quan sát được, thậm chí giả định sự phân bố phức tạp của các quỹ đạo sao.[7]

Như với các đường cong xoay của thiên hà, cách rõ ràng để giải quyết sự khác biệt là định nghĩa sự tồn tại của vật chất không phát sáng.

Cụm thiên hà

Các cụm thiên hà đặc biệt quan trọng đối với các nghiên cứu vật chất tối vì khối lượng của chúng có thể được ước tính theo ba cách độc lập:

  • Từ sự phân tán vận tốc hướng tâm của các thiên hà trong các cụm
  • Từ tia X phát ra từ khí nóng trong cụm. Từ phổ năng lượng tia X và thông lượng, nhiệt độ và mật độ khí có thể được ước tính, do đó tạo ra áp suất; giả sử áp suất và cân bằng trọng lực xác định hồ sơ khối lượng của cụm.
  • Thấu kính hấp dẫn (thường là các thiên hà ở xa hơn) có thể đo khối lượng cụm mà không cần dựa vào các quan sát động lực học (ví dụ: vận tốc).

Nói chung, ba phương pháp này nằm trong thỏa thuận hợp lý, vật chất tối lớn hơn vật chất có thể nhìn thấy khoảng 5 đến 1.[8]

Thấu kính hấp dẫn

Thấu kính hấp dẫn mạnh theo quan sát của Kính viễn vọng Không gian Hubble trong Abell 1689 cho thấy sự hiện diện của vật chất tối - phóng to hình ảnh để xem các vòng cung thấu kính.Các mô hình thiên hà đĩa quay trong thời đại ngày nay (trái) và mười tỷ năm trước (phải). Trong thiên hà ngày nay, vật chất tối - thể hiện bằng màu đỏ - tập trung nhiều hơn ở gần trung tâm và nó quay nhanh hơn (hiệu ứng phóng đại).Bản đồ vật chất tối cho một mảng bầu trời dựa trên phân tích thấu kính hấp dẫn của khảo sát Kilo-Degree.[9]

Một trong những hậu quả của thuyết tương đối rộng là các vật thể lớn (như cụm thiên hà) nằm giữa một nguồn xa hơn (như chuẩn tinh) và người quan sát phải đóng vai trò như một thấu kính để bẻ cong ánh sáng từ nguồn này. Một vật thể càng lớn, ống kính càng được quan sát nhiều.

Thấu kính mạnh là sự biến dạng quan sát được của các thiên hà nền thành các cung khi ánh sáng của chúng đi qua một thấu kính hấp dẫn như vậy. Nó đã được quan sát xung quanh nhiều cụm ở xa bao gồm Abell 1689.[10] Bằng cách đo hình học biến dạng, có thể thu được khối lượng của cụm can thiệp. Trong hàng chục trường hợp đã được thực hiện, các tỷ lệ khối lượng ánh sáng thu được tương ứng với các phép đo vật chất tối động của các cụm.[11] Thấu kính có thể dẫn đến nhiều bản sao của một hình ảnh. Bằng cách phân tích sự phân bố của nhiều bản sao hình ảnh, các nhà khoa học đã có thể suy luận và lập bản đồ phân bố vật chất tối xung quanh cụm thiên hà MACS J0416.1-2403.[12][13]

Weak gravitational lensing investigates minute distortions of galaxies, using statistical analyses from vast galaxy surveys. By examining the apparent shear deformation of the adjacent background galaxies, the mean distribution of dark matter can be characterized. The mass-to-light ratios correspond to dark matter densities predicted by other large-scale structure measurements.[14] Dark matter does not bend light itself; mass (in this case the mass of the dark matter) bends spacetime. Light follows the curvature of spacetime, resulting in the lensing effect.[15][16]

Nền vi sóng vũ trụ

Bài chi tiết: Nền vi sóng vũ trụ

Mặc dù cả vật chất tối và vật chất thông thường đều là vật chất, nhưng chúng không hành xử theo cùng một cách. Đặc biệt, trong vũ trụ sơ khai, vật chất thông thường bị ion hóa và tương tác mạnh với bức xạ thông qua sự tán xạ Thomson. Vật chất tối không tương tác trực tiếp với bức xạ, nhưng nó ảnh hưởng đến CMB bởi thế năng hấp dẫn của nó (chủ yếu ở quy mô lớn) và do ảnh hưởng của nó đến mật độ và vận tốc của vật chất thông thường. Do đó, nhiễu loạn vật chất thông thường và tối, phát triển khác nhau theo thời gian và để lại những dấu ấn khác nhau trên nền vi sóng vũ trụ (CMB).

Nền vi sóng vũ trụ rất gần với một người da đen hoàn hảo nhưng chứa bất đẳng hướng nhiệt độ rất nhỏ của một vài phần trong 100.000. Một bản đồ bầu trời của dị hướng có thể bị phân hủy thành phổ công suất góc, được quan sát thấy có chứa một loạt các đỉnh âm ở khoảng cách gần bằng nhau nhưng độ cao khác nhau. Một loạt các đỉnh có thể được dự đoán cho bất kỳ tập hợp các tham số vũ trụ giả định nào bằng các mã máy tính hiện đại như CMBFast và CAMB, và lý thuyết khớp với dữ liệu, do đó, hạn chế các tham số vũ trụ.[17] Đỉnh thứ nhất chủ yếu cho thấy mật độ của vật chất baryonic, trong khi đỉnh thứ ba chủ yếu liên quan đến mật độ vật chất tối, đo mật độ vật chất và mật độ của các nguyên tử.[17]

Bất đẳng hướng CMB lần đầu tiên được phát hiện bởi COBE vào năm 1992, mặc dù điều này có độ phân giải quá thô để phát hiện các đỉnh âm thanh. Sau khi phát hiện ra đỉnh âm thanh đầu tiên của thí nghiệm BOOMERanG từ khinh khí cầu vào năm 2000, phổ công suất đã được WMAP quan sát chính xác vào năm 2003, năm 2012 và thậm chí chính xác hơn là tàu vũ trụ Planck vào năm 2013 2015. Các kết quả hỗ trợ mô hình Lambda-CDM.[18][19]

Phổ công suất góc CMB quan sát được cung cấp bằng chứng mạnh mẽ hỗ trợ vật chất tối, vì cấu trúc chính xác của nó được trang bị tốt bởi Lambda-CDM model,[19]nhưng khó tái tạo với bất kỳ mô hình cạnh tranh nào, chẳng hạn như động lực học Newton đã sửa đổi (MOND).[19][20]

Structure formation

Bài chi tiết: Structure formation
Bản đồ 3 chiều về sự phân bố vật chất tối quy mô lớn, được tái tạo từ các phép đo của thấu kính hấp dẫn yếu với Kính viễn vọng Không gian Hubble.[21]

Structure formation refers to the period after the Big Bang when density perturbations collapsed to form stars, galaxies, and clusters. Prior to structure formation, the Friedmann solutions to general relativity describe a homogeneous universe. Later, small anisotropies gradually grew and condensed the homogeneous universe into stars, galaxies and larger structures. Ordinary matter is affected by radiation, which is the dominant element of the universe at very early times. As a result, its density perturbations are washed out and unable to condense into structure.[22] If there were only ordinary matter in the universe, there would not have been enough time for density perturbations to grow into the galaxies and clusters currently seen.

Dark matter provides a solution to this problem because it is unaffected by radiation. Therefore, its density perturbations can grow first. The resulting gravitational potential acts as an attractive potential well for ordinary matter collapsing later, speeding up the structure formation process.[22][23]

Bullet Cluster

Bài chi tiết: Bullet Cluster

If dark matter does not exist, then the next most likely explanation must be general relativity – the prevailing theory of gravity – is incorrect and should be modified. The Bullet Cluster, the result of a recent collision of two galaxy clusters, provides a challenge for modified gravity theories because its apparent center of mass is far displaced from the baryonic center of mass.[24] Standard dark matter models can easily explain this observation, but modified gravity has a much harder time,[25][26] especially since the observational evidence is model-independent.[27]

Type Ia supernova distance measurements

Type Ia supernovae can be used as standard candles to measure extragalactic distances, which can in turn be used to measure how fast the universe has expanded in the past. Data indicates the universe is expanding at an accelerating rate, the cause of which is usually ascribed to dark energy.[28] Since observations indicate the universe is almost flat,[29][30][31] it is expected the total energy density of everything in the universe should sum to 1 (Ωtot ≈ 1). The measured dark energy density is ΩΛ ≈ 0.690; the observed ordinary (baryonic) matter energy density is Ωb ≈ 0.0482 and the energy density of radiation is negligible. This leaves a missing Ωdm ≈ 0.258 which nonetheless behaves like matter (see technical definition section above)  – dark matter.[32]

Sky surveys and baryon acoustic oscillations

Baryon acoustic oscillations (BAO) are fluctuations in the density of the visible baryonic matter (normal matter) of the universe on large scales. These are predicted to arise in the Lambda-CDM model due to acoustic oscillations in the photon–baryon fluid of the early universe, and can be observed in the cosmic microwave background angular power spectrum. BAOs set up a preferred length scale for baryons. As the dark matter and baryons clumped together after recombination, the effect is much weaker in the galaxy distribution in the nearby universe, but is detectable as a subtle (≈1 percent) preference for pairs of galaxies to be separated by 147 Mpc, compared to those separated by 130–160 Mpc. This feature was predicted theoretically in the 1990s and then discovered in 2005, in two large galaxy redshift surveys, the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey.[33] Combining the CMB observations with BAO measurements from galaxy redshift surveys provides a precise estimate of the Hubble constant and the average matter density in the Universe.[34] The results support the Lambda-CDM model.

Redshift-space distortions

Large galaxy redshift surveys may be used to make a three-dimensional map of the galaxy distribution. These maps are slightly distorted because distances are estimated from observed redshifts; the redshift contains a contribution from the galaxy's so-called peculiar velocity in addition to the dominant Hubble expansion term. On average, superclusters are expanding more slowly than the cosmic mean due to their gravity, while voids are expanding faster than average. In a redshift map, galaxies in front of a supercluster have excess radial velocities towards it and have redshifts slightly higher than their distance would imply, while galaxies behind the supercluster have redshifts slightly low for their distance. This effect causes superclusters to appear squashed in the radial direction, and likewise voids are stretched. Their angular positions are unaffected. This effect is not detectable for any one structure since the true shape is not known, but can be measured by averaging over many structures. It was predicted quantitatively by Nick Kaiser in 1987, and first decisively measured in 2001 by the 2dF Galaxy Redshift Survey.[35] Results are in agreement with the Lambda-CDM model.

Lyman-alpha forest

Bài chi tiết: Lyman-alpha forest

In astronomical spectroscopy, the Lyman-alpha forest is the sum of the absorption lines arising from the Lyman-alpha transition of neutral hydrogen in the spectra of distant galaxies and quasars. Lyman-alpha forest observations can also constrain cosmological models.[36] These constraints agree with those obtained from WMAP data.


Tài liệu tham khảo

WikiPedia: Vật_chất_tối http://www.britannica.com/EBchecked/topic/151686 http://video.google.com/videoplay?docid=-811458069... http://astron.berkeley.edu/~mwhite/darkmatter/hdm.... http://adsabs.harvard.edu/abs/1976ApJ...204..668F http://adsabs.harvard.edu/abs/1998ApJ...501..539T http://adsabs.harvard.edu/abs/1998MNRAS.301..861W http://adsabs.harvard.edu/abs/2000MNRAS.311..441C http://adsabs.harvard.edu/abs/2001Natur.410..169P http://adsabs.harvard.edu/abs/2003ARA&A..41..645R http://adsabs.harvard.edu/abs/2006ApJ...648L.109C